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1. (Ex.1 Ch.9 in textbook) Suppose that a meromorphic function f has two periods ω1 and
ω2, with ω2/ω1 ∈ R

(a) Suppose ω2/ω1 is rational, say equal to p/q, where p and q are relatively prime
integers. Prove that as a result the periodicity assumption is equivalent to the as-
sumption that f is periodic with the simple period ω0 = 1

q
ω1. [Hint: Since p and q

are relatively prime, there exist integers m and n such that mq + np = 1 (Corollary
1.3, Chapter 8, Book I).]

(b) If ω2/ω1 is irrational, then f is constant. To prove this, use the fact that {m − nτ}
is dense in R whenever τ is irrational and m,n range over the integers.

Solution. (a) If ω2/ω1 is rational, say, p
q

with p, q relatively prime, then there exist
intergers m and n, such that mp+ nq = 1. Then we have

f(z) = f(z +mw2 + nw1) = f(z +
mp

q
w1 + nw1) = f(z +

1

q
w1)

(b) If τ = ω2/ω1 is irrational, then

f(z) = f(z +mw2 + nw1) = f(z + (mτ + n)w1)

Since (mτ +n) is dense in C, for fixed z, we find f(z) is constant on a dense subset
of C. On the other hand, f is meromorphic, hence constant.

◀

2. (Ex.3 Ch.9 in textbook) In contrast with the result in Lemma 1.5, prove that the series∑
n+mτ∈Λ∗

1

|n+mτ |2
where τ ∈ H

does not converge. In fact, show that∑
1≤n2+m2≤R2

1/
(
n2 +m2

)
= 2π logR +O(1) as R → ∞.

Solution. Recall in our proof of Lemma 1.5 we showed there exists a small δτ , such that

δτ |n+mi| ≤ |n+mτ |

By the similar way, we can show exists ϵτ , such that

ϵτ |n+mτ | ≤ |n+mi| = m2 + n2



Thus we only need to show ∑
1≤n2+m2≤R2

1

n2 +m2

diverges. For any integer N , consider the region: An := {(n,m) ∈ Λ∗|N − 1
2

<
|m|, |n| < N + 1

2
}. It is easy to count there are 8N lattice points inside An and

∑
1≤n2+m2≤R2

1

n2 +m2
=

∞∑
i=1

∑
(n,m)∈Λ∗∩Ai

1

n2 +m2

Thus,
∞∑
i=1

(8i)
1

2i2
≤

∞∑
i=1

∑
(n,m)∈Λ∗∩Ai

1

n2 +m2
≤

∞∑
i=1

(8i)
1

i2

which diverges. ◀

3. (Ex.4 Ch.9 in textbook)By rearranging the series

1

z2
+

∑
ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
show directly, without differentiation, that ℘(z + ω) = ℘(z) whenever ω ∈ Λ. [Hint:
For R sufficiently large, note that ℘(z) = ℘R(z) + O(1/R), where ℘R(z) = z−2 +∑

0<|ω|<R ((z + ω)−2 − ω−2). Next, observe that both ℘R(z + 1) − ℘R(z) and ℘R(z +

τ)− ℘R(z) are O
(∑

R−c<|ω|<R+c |ω|−2
)
= O(1/R).

]
Solution. We follow the hint, dividing it into two parts: ∀|z| ≤

√
R

1

z2
+
∑
ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
= AR(z)+BR(z) = z−2+

∑
0<|ω|<R

(
(z + ω)−2 − ω−2

)
)+

∑
R≤|ω|

(
(z + ω)−2 − ω−2

)
)

First we have

| 1

(z + ω)2
− 1

ω2
| = |−z2 − 2zω

ω2(z + ω)2
| ≤ C

1

|ω|3

Thus

|BR(z)| ≤
∞∑
i=R

∑
i−1<|ω|<i+1

C

|ω|3
∼ 1

R

Here we use a fact that the number of integer points inside the annulus {i − 1 ≤ |y| ≤
i + 1} is almost ki. And for AR(z), the difference between AR(z) and AR(z + 1) is at
most the values in the Annulus:

|AR(z)− AR(z + t)| ≤
∑

R−t≤|ω|≤R+t

1

|(z + ω)2|
∼ 1

R

Thus ℘(z)− ℘(z + 1) ∼ 1
R

and let R → ∞, we get the result we desired. ◀


