THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH4060 Complex Analysis 2022-23

Tutorial 11

13th April 2022

1. (Ex. 1 Ch. 9 in textbook) Suppose that a meromorphic function f has two periods ω_{1} and ω_{2}, with $\omega_{2} / \omega_{1} \in \mathbb{R}$
(a) Suppose ω_{2} / ω_{1} is rational, say equal to p / q, where p and q are relatively prime integers. Prove that as a result the periodicity assumption is equivalent to the assumption that f is periodic with the simple period $\omega_{0}=\frac{1}{q} \omega_{1}$. [Hint: Since p and q are relatively prime, there exist integers m and n such that $m q+n p=1$ (Corollary 1.3, Chapter 8, Book I).]
(b) If ω_{2} / ω_{1} is irrational, then f is constant. To prove this, use the fact that $\{m-n \tau\}$ is dense in \mathbb{R} whenever τ is irrational and m, n range over the integers.

Solution. (a) If ω_{2} / ω_{1} is rational, say, $\frac{p}{q}$ with p, q relatively prime, then there exist intergers m and n, such that $m p+n q=1$. Then we have

$$
f(z)=f\left(z+m w_{2}+n w_{1}\right)=f\left(z+\frac{m p}{q} w_{1}+n w_{1}\right)=f\left(z+\frac{1}{q} w_{1}\right)
$$

(b) If $\tau=\omega_{2} / \omega_{1}$ is irrational, then

$$
f(z)=f\left(z+m w_{2}+n w_{1}\right)=f\left(z+(m \tau+n) w_{1}\right)
$$

Since $(m \tau+n)$ is dense in \mathbb{C}, for fixed z, we find $f(z)$ is constant on a dense subset of \mathbb{C}. On the other hand, f is meromorphic, hence constant.
2. (Ex. 3 Ch. 9 in textbook) In contrast with the result in Lemma 1.5, prove that the series

$$
\sum_{n+m \tau \in \Lambda^{*}} \frac{1}{|n+m \tau|^{2}} \quad \text { where } \tau \in \mathbb{H}
$$

does not converge. In fact, show that

$$
\sum_{1 \leq n^{2}+m^{2} \leq R^{2}} 1 /\left(n^{2}+m^{2}\right)=2 \pi \log R+O(1) \quad \text { as } R \rightarrow \infty .
$$

Solution. Recall in our proof of Lemma 1.5 we showed there exists a small δ_{τ}, such that

$$
\delta_{\tau}|n+m i| \leq|n+m \tau|
$$

By the similar way, we can show exists ϵ_{τ}, such that

$$
\epsilon_{\tau}|n+m \tau| \leq|n+m i|=m^{2}+n^{2}
$$

Thus we only need to show

$$
\sum_{1 \leq n^{2}+m^{2} \leq R^{2}} \frac{1}{n^{2}+m^{2}}
$$

diverges. For any integer N, consider the region: $A_{n}:=\left\{(n, m) \in \Lambda^{*} \left\lvert\, N-\frac{1}{2}<\right.\right.$ $\left.|m|,|n|<N+\frac{1}{2}\right\}$. It is easy to count there are $8 N$ lattice points inside A_{n} and

$$
\sum_{1 \leq n^{2}+m^{2} \leq R^{2}} \frac{1}{n^{2}+m^{2}}=\sum_{i=1}^{\infty} \sum_{(n, m) \in \Lambda^{*} \cap A_{i}} \frac{1}{n^{2}+m^{2}}
$$

Thus,

$$
\sum_{i=1}^{\infty}(8 i) \frac{1}{2 i^{2}} \leq \sum_{i=1}^{\infty} \sum_{(n, m) \in \Lambda^{*} \cap A_{i}} \frac{1}{n^{2}+m^{2}} \leq \sum_{i=1}^{\infty}(8 i) \frac{1}{i^{2}}
$$

which diverges.
3. (Ex. 4 Ch. 9 in textbook)By rearranging the series

$$
\frac{1}{z^{2}}+\sum_{\omega \in \Lambda^{*}}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]
$$

show directly, without differentiation, that $\wp(z+\omega)=\wp(z)$ whenever $\omega \in \Lambda$. [Hint: For R sufficiently large, note that $\wp(z)=\wp^{R}(z)+O(1 / R)$, where $\wp^{R}(z)=z^{-2}+$ $\sum_{0<|\omega|<R}\left((z+\omega)^{-2}-\omega^{-2}\right)$. Next, observe that both $\wp^{R}(z+1)-\wp^{R}(z)$ and $\wp^{R}(z+$ $\tau)-\wp^{R}(z)$ are $O\left(\sum_{R-c<|\omega|<R+c}|\omega|^{-2}\right)=O(1 / R)$.]

Solution. We follow the hint, dividing it into two parts: $\forall|z| \leq \sqrt{R}$

$$
\left.\frac{1}{z^{2}}+\sum_{\omega \in \Lambda^{*}}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]=A_{R}(z)+B_{R}(z)=z^{-2}+\sum_{0<|\omega|<R}\left((z+\omega)^{-2}-\omega^{-2}\right)\right)+\sum_{R \leq|\omega|}\left((z+\omega)^{-2}-\omega^{-}\right.
$$

First we have

$$
\left|\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right|=\left|\frac{-z^{2}-2 z \omega}{\omega^{2}(z+\omega)^{2}}\right| \leq C \frac{1}{|\omega|^{3}}
$$

Thus

$$
\left|B_{R}(z)\right| \leq \sum_{i=R}^{\infty} \sum_{i-1<|\omega|<i+1} \frac{C}{|\omega|^{3}} \sim \frac{1}{R}
$$

Here we use a fact that the number of integer points inside the annulus $\{i-1 \leq|y| \leq$ $i+1\}$ is almost $k i$. And for $A_{R}(z)$, the difference between $A_{R}(z)$ and $A_{R}(z+1)$ is at most the values in the Annulus:

$$
\left|A_{R}(z)-A_{R}(z+t)\right| \leq \sum_{R-t \leq|\omega| \leq R+t} \frac{1}{\left|(z+\omega)^{2}\right|} \sim \frac{1}{R}
$$

Thus $\wp(z)-\wp(z+1) \sim \frac{1}{R}$ and let $R \rightarrow \infty$, we get the result we desired.

